/v

AARHUS UNIVERSITET

Software Engineering
and Architecture

Distributed Systems
An Introduction



eV Intro...

AARHUS UNIVERSITET
« Distributed Computing is the last major SWEA topic

— Our perspective: Programming and Pattern Perspective

Flexible, Reliable,

. ] ' Distributed Software
Agile Development

— Confusion: Looks much the the first...

— Get it from https://leanpub.com/frds
» For the price of a box of beer...

— Yes, I like pyramids !

Henrik Beerbak Christensen

CS@AU Henrik Baerbak Christensen



/v Distributed System

AARHUS UNIVERSITET

Detfinition: Distributed System

A distributed system is one in which components located at networked
computers communicate and coordinate their actions only by passing
messages. (Coulouris, Dollimore, Kindberg, and Blair 2012)

 Why?
— To speed up computation
» Google search, machine learning, and (a few) other cases

— To share information
» Everything else! (Slight exaggeration!)

CS@AU Henrik Baerbak Christensen 3



/v Limitations

AARHUS UNIVERSITET
» Distributed systems and distributed computing is a...

... vast subject area !!!

 We will limit ourselves to a "niche”

Client-server Architectures using Remote Method Invocation

... this niche covers a /ot of systems in practice ©

CS@AU Henrik Baerbak Christensen 4



/v And Limiting ourselves

AARHUS UNIVERSITET
e Even thatis

... difficult to make!!!

* ... because it must be
— Highly available, performant, and secure

« And that is topics in advanced software architecture

We will only consider happy path:
All computers and networks are working;

Few users and none that are malicious

CS@AU Henrik Beerbak Christensen 5



/v Client-Server

AARHUS UNIVERSITET
 You all know ‘client-server’ architectures, but...

Client-server architecture Two components need to communicate,
and they are independent of each other, even running in different
processes or being distributed in different machines. The two com-
ponents are not equal peers communicating with each other, but
one of them is initiating the communication, asking for a service
that the other provides. Furthermore, multiple components might
request the same service provided by a single component. Thus, the

component providing a service must be able to cope with numerous
requests at any time, i.e. the component must scale well. On the
other hand, the requesting components using one and the same
service might deal differently with the results. This asymmetry
between the components should be reflected in the architecture for
the optimization of quality attributes such as performance, shared
use of resources, and memory consumption.

Reactive

Active

The CLIENT-SERVER pattern distinguishes two kinds of compo-
nents: clients and servers. The client requests information or ser-
vices from a server. To do so it needs to know how to access the
server, that is, it requires an ID or an address of the server and of
course the server’s interface. The server responds to the requests
of the client, and processes each client request on its own. It does
not know about the ID or address of the client before the interaction

takes place. Clients are optimized for their application task, whereas

servers are optimized for serving multiple clients3. Ala: web browsing, facebook, ...

3Paris Avgeriou and Uwe Zdun, “Architectural patterns revisited - a pattern language”, In 10th European ngean 6
Conference on Pattern Lanquages of Programs (EuroPlop), Irsee, 2005.



/v Client-Server

AARHUS UNIVERSITET

* One big difference from all you have been doing up until
Now...
— You have been building “programs” = all behavior in one ‘unit’

* Aclient-server system consists ofm

* The client program: The one the user runs
— Communicating with...

 The server program: Well hidden in some server room
— The one storing the ‘shared information’

CS@AU Henrik Baerbak Christensen 7



/v Or Visually

AARHUS UNIVERSITET

game.playCard(Findus, ff);

Client program

game.playCard(Findus, ff);

Henrik Baerbak Christensen Server program




AARHUS UNIVERSITET

/v Or Visually
<

game.playCard(Findus, c) {
result =
sendToServer(“Findus tries to play ff”);
return result;

Await incoming command, c {
if (c == “Findus tries to play ff”) {
r = game.playCard(Findus,ff);
Ao, send ‘r’ back to client;
} else ...

Client program

Henrik Baerbak Christensen Server program




/v

AARHUS UNIVERSITET

game.playCz
result =
sendToSe
return res

}

h ctstchec

Henrik Baerbak Christensen

Or Visually

play ff”) {
dus,ff);

Server program




/v One Word of Caution

AARHUS UNIVERSITET
« We will happily disregard security !!!

« Security is so important that we ignore it!
— Because the real security techniques is one big set of hard
bindings and strong coupling

* You need certificates that tie you to a specific DNS name
— Certificate stores, key pair generation, trust chains, yaga yaga

* Quite a lot of extra coding and makes experiments difficult

 Morale: Add that stuff for real production usage !



/v

The History
AARHUS UNIVERSITET
* Birrell and Nelson, 1984:

— “allow calling procedure on remote machines”

— A calls procedure f on B means
» A suspends, information on f is transmitted to B
» B executes the f procedure

B sends the result back to A
« Aresumes



/v

AARHUS UNIVERSITET

Grounding Example

TeleMed

Inspired by Net4Care:
https.//baerbak.cs.au.dk/netdcare/



eV Vision

AARHUS UNIVERSITET N —
« Vision Sy
— Replace out-patient visits by
measurements made by i

patients in their home

— Move data from home to
regional/national storage so all
health care personal can view them...

 Motivation

— Reduce out-patient visits
» Better quality of life
» Cost savings
» Better traceability and visibility

CS@AU Henrik Baerbak Christensen 14



/v Story 1

AARHUS UNIVERSITET
2) BP measurement stored
as HL7 document

‘ ﬂ - 7L -
Knud had a ’W =
heart attack N
National XDS
Tele Medicine
Server

Inger has high
1) Inger measures her BP . Hpspitl Chyiggas
o . General Practitioneer
using her TeleMed terminal

Blood pressure
CS@AU Henrik Beerbak Christensen 15




/v Story 2

AARHUS UNIVERSITET

2) Query for all BP documents

associated with Inger

Knud had a W
heart attack

Inger has high
Blood pressure

National XDS
Tele Medicine

Server

Hospital Clinician

1) GP queries last month’s BP [ttt
measurements for Inger using

web browser

CS@AU Henrik Beerbak Christensen 16



Y (What is XDS)

AARHUS UNIVERSITET

« Cross-Enterprise Document Sharing
— One Registry + Multiple Repositories
— Repository: Stores clinical documents
* (id,document) pairs
— Registry: Stores metadata with document id

* Metadata (cpr, timeinterval, physician, measurement type,...)
* |d of associate document and its repository

 Think
— Registry = Google (index but no data)
— Repository = Webserver (data but no index)

H B Christensen 17



\ 4
AARHUS UNIVERSITET

information storage and exchange.
— Version 3 loves XML!

e Qur version:

http://localhost4567/bp/pid01 +

localhost:45

| TeleMed

Observations for pid01

There are 1 observations.

Real version:

<ClinicalDocument>

<patient>
<id extensicon="pidol"/>
«</patienc>
<component>
<observation>
<code code

Tk e T

TERE

"MSCE88019" displayName

<effectiveTime value="201&0303121148"/>

<value unit="mm(Hg)" wvaluse="115.0"/>

</observation>
<observation>

</observation>
</ component>
</ClinicalDocument>

P T T WL N

Bl

B e e e

<?xml wversion="1.0" encoding="UIF-8" =standalone="no"?>

"Systolisk BT"/>

<code code="MS5CS88020" displayMName="Diastolisk BT"/>
<value unit="mm (Hg)" value="&5.0"/>

tensen

(What is HL7)

« HL7 is a standard (complex!) for clinical

Heac

Patient informa

“Author’, hers interprated as the clincial
authorized,/prescribed the device as par
trestment/monitaring

Custodian, the organization that
has HL? "stewardship” which |
translate as they who are legally
responsible for storage etc.

Documentation of the hardware
have only the Device ID here and
guessed some and left out the re

One measureme
each measurenm
contained ina ‘e
which ‘code’ enc
is and "value’ en
measuremeant it

LB

UIPAC coded

511" Bl Name=" Sysralisc

63515561 1 diplay N am:




/v

AARHUS UNIVERSITET

* Roles involved

Client side (local)

HomeClient

TeleMed Design

server

Server side (remote)

client

*

create——

TeleObservation

TeleMed

» TeleObservation: Represents a measurement

 HomeClient: Responsible for measuring + uploading

« TeleMed: Responsible for storage and queries




\ 4
AARHUS UNIVERSITET

« Start a server
— gradle serverHttp

« Send an obs.
— gradle homeHttp

— ... -Psys=126 -Pdia=70

-Pid=pid17

* GP review in browser
— http://localhost:4567/bp/pid17 RSEEF:

[INFO] org

@ [INFO]
[INFO]
@ [INFO] c

df

[INFO]
[INFO]
[INFO]

EXECUTING [
erverHttp

csdev@m1:

lipse.jetty.util.log :

csdev@ml broker 89x18
= S gradle homeHttp -Psys=12
a Gradle Daemon, 1 busy Daemon could not be r

-Pdia=77 -Pid=pidi7
, use --status for details

> Task :telemed:homeHttp
meClient: A d to do operation store for patient pidi7
mpleted.

ode all’
s.gradle.or d_line te ce.html# command_Lline_wa

BUILD SUCCESSFUL inm 3
6 ionable tas

b localhost:as67/bp/pid17 % | +

&« C @ © | D localhost:4567/bp/pid17 wee | IN

TeleMed

Observations for pid17

There are 1 observations.

"UTF-8" standal

10-14T10:

astolic BP"/>




/v

AARHUS UNIVERSITET

* The source code is open
source at
— https://bitbucket.org/henrikbaerb

ak/broker/
— Download or Fork

* You will want its code to
learn the Broker pattern...

— But your HotStone mandatory
only needs to fetch the Broker
library using gradle...

* As with the MiniDraw library
CS@AU

Source Code

broker

Clone ==+

Here's where you'll find this repository's source files. To give your users an idea of what they'll find here, add a

description to your repasitory.

f9 master v

b/

Name
. broker

. demo-rest

demo

demo2

pastebin

> BN

.gitignore

@

LICENSE

[P

README.md

[P

build.gradle

@

gradlew

[P

gradlew.bat

[P

settings.gradle

@

version.md

Henrik Baerbak Christensen

Size

616

11.25 KB

7.62 KB

697 B

5.17 KB

2.21 KB

707 B

284 B

Last commit

2018-06-12

2018-06-12

2018-06-12

2018-06-15

2018-09-18

2018-04-05

2018-05-01

2018-09-18

2018-04-09

2018-04-26

2018-04-09

2018-05-08

2018-06-12

Message

Fix #8 and #6. Marshalling format version can be...
Fix #8 and #6. Marshalling format version can be...
Updated version and docs.

Updated manual test case to allow a ‘'move’ oper...
Added Pastebin demo

Broken snapshot. Added frs.broker library from R...
Release Candidate 1.2. Updated readme, license
Added Pastebin demo

Added Apache licence to all files

Made demo programs.

Cleaning up old javadoc comments with refs to F..
Added demo-rest; imported old REST/CRUD de...

Updated version and docs.

21


https://bitbucket.org/henrikbaerbak/broker/
https://bitbucket.org/henrikbaerbak/broker/
https://bitbucket.org/henrikbaerbak/broker/

VeV Source Code

AARHUS UNIVERSITET

e Subprojects broker
— Broker: Core roles + default b

implementation of some \ -

— TeleMed: The TeleMed code
including tests of broker code \

Henrik Baerbak Christensen

gamelobby-rest
gamelobby
pastebin
telemed-rest
telemed

.gitignore

— Others: We will return to these
next...

LICENSE
README.md

build.gradle

D ey PEFEFERRS

gradlew

CS@AU Henrik Baerbak Christensen

Size

618

11.25 KB

8.63 KB

697 B

517 KB

Last commit

2019-10-18

20 hours ago

2019-08-07

2019-04-30

2019-05-02

2019-10-18

2018-04-05

2018-05-01

20 hours ago

2018-04-09

2019-10-18

Clone

Message

Updated IPC test cases to have more...
Removed debug output. Updated RE...
Fixed magic constant in the marshalli...
Added note on pastebin design.

Minor code cleanup

Updated IPC test cases to have more...
Broken snapshot. Added frs.broker lib...
Release Candidate 1.2, Updated read...
Removed debug output. Updated RE...
Added Apache licence to all files

Updated IPC test cases to have more...

22



/v

AARHUS UNIVERSITET

Issues In Distribution

Why is it hard?



/v Challenge

AARHUS UNIVERSITET
 How guys like me like to code:

Definition: Object-orientation (Responsibility)
An object-oriented program is structured as a community of interacting
agents called objects. Each object has a role to play. Each object provides

a service or performs an action that is used by other members of the
community:.

* Which is then something like this on the client:

public void makeMeasurement() |
TeleObservation teleObs;
teleObs = bloodPressureMeterHardware . measure ();
TeleMed server = new RemoteTeleMedOnServer (...);
String teleObsld = server.processAndStore(teleObs);

}

CS@AU Henrik Baerbak Christensen 24



Y o Challenge

AARHUS UNIVERSITET
 However - networks only support two asynch functions!

void send(Object serverAddress, byte[] message);
byte[] receive ();

« Which is not exactly the same as

public void makeMeasurement () |{
TeleObservation teleObs:
teleObs = bloodPressureMeterHardware . measure ();
TeleMed server = new RemoteTeleMedOnServer (...);
String teleObsld = server.processAndStore(teleObs);

CS@AU Henrik Baerbak Christensen 25



/v Issues (at least!)

AARHUS UNIVERSITET

public void makeMeasurement() {

I I TeleOb tion teleObs;
Send/rece Ive IS a too IOW Ievel teeleeObSse;vlfléggPrzszureSMeterHardware .measure ();
TeleMed server = new RemoteTeleMedOnServer (...);

programming mOdeI String teleObsld = server.processAndStore(teleO]’as),'
|

Send() does not wait for a reply from server (Asynch)

Reference to object on my machine does not make
sense on remote computer (memory address)

Networks does not transfer objects, just bits Security QA
Networks are slow ‘ Availability QA
Networks and remote computers may fail Performance QA
Networks are insecure, others may pick up our data

Architectural Issues: Not SWEA stuff. (Follow my EVU course once you are in a job ©)

CS@AU Henrik Baerbak Christensen 26



eV Performance

AARHUS UNIVERSITET

« Just how much slower is a network call compared to a
local in-dVM memory call?

Configuration Average time  Max time (ms) Factor

(ms)
Local call 1,796 3,360 1.0
Localhost 0,731 12,8006 5.4
Docker 17,091 35,873 Q.
On switch 22,817 20,427 12.7
Frankurt 494,966 513,411

* Imagine that your next trip to the supermarket for a soda
was 275 times slower???

— 10 minutes walk versus 46,8 hours walking ©

CS@AU Henrik Baerbak Christensen 27



eV Elements of a Solution

AARHUS UNIVERSITET
* On the ‘happy path’, we need to

— Make the HomeClient invoke a synchronous method call on a
remote TeleMed object using only network send/receive

— Keep our OO programming model: telemed.processAndStore(to);
» That is invoke specific method on remote object

— Convert TeleObservation object into bits to send it, and convert it
back again

— Locate the remote TeleMed object



VeV Elements Overview

AARHUS UNIVERSITET

e Solutions are
— Request/Reply Protocol
« Simulate synchronous call (solves (partly) concurrency issue)
— Marshalling
« Packing objects into bits and back (solves data issue)
— Proxy Pattern
« Simulate method call on client (solves programming model issue)
— Naming Systems
» Use a registry/name service (solves remote location issue)

« Bundled together these constitute
— The Broker pattern



/v

AARHUS UNIVERSITET

Request/Reply



VeV The Protocol

AARHUS UNIVERSITET
Definition: Request-Reply Protocol

The request-reply protocol simulate a synchroneous call between client
and a server objects by a pairwise exchange of messages, one forming the
request message from client to server, and the second forming the reply
message from the server back to the client. The client sends the request
message, and waits/blocks until the reply message has been received.

« Known from every WWW access you have ever made...
— Firefox will block until a web page has been received



/v

AARHUS UNIVERSITET

Client does

— Send() and
receive

Server does

— Receive() and
send()

Roles

send

Pairing Send/Receives

.server

receive

receive

handle Request

— Client is active — initiate action
— Server is reactive — awaits actions and then reacts

send




/v

AARHUS UNIVERSITET

CS@AU

Marshalling

Or Serialization

Henrik Baerbak Christensen

33



/v Definitions

AARHUS UNIVERSITET

Marshalling is the process of taking a collection of structured data
items and assembling them into a byte array suitable for transmis-
sion in a network message.

Unmarshalling is the process of disassembling a byte array received
in a network message to produce the equivalent collection of struc-
tured data items.

CS@AU Henrik Baerbak Christensen

34



eV Two Basic Approaches

AARHUS UNIVERSITET
 There are two approaches
JSON blood pressure
— Binary formats {
. patientld: “'251248-1234"",
« Google ProtoBuf, proprietary systolic:  128.0,
diastolic: 76.0

}

— Textual formats
« XML, JSON, proprietary

 EXxercise: Costs? Benefits?

CS@AU Henrik Baerbak Christensen 35



eV And we need more

AARHUS UNIVERSITET

« As we can send only bits, we also need to marshal
information about the method and object id!

{

methodName : "processAndStore_method"”,
parameters : |
{
patientld: 7251248 -1234"",
systolic: 128.0,

diastolic: 76.0
}

]
|



VeV Note

AARHUS UNIVERSITET

« Marshalling is fine for primitive datatypes (int, double,
char, array, ...) but...

« What about object references?
— inventory.addCustomer(c) where ¢ is Customer object?

— Issue: the ‘c’is an object reference but how to a use ‘c’ on the
client if the object is located on the server?

« Actually, it sort of depends on parameter passing...



/v Parameter Passing

AARHUS UNIVERSITET

* Pass by reference
— The Java style for all object types
— You do not get the Customer value, you get a reference to it!

— public void addCustomer(Customer c);
» (‘c’is a reference to data, not the data themselves)

* Pass by value
— Java does this for primitive types, like int and double
— You do get the value itself

— public void deposit(double amount);
* (‘amount’ is the data (a copy of the value passed))



eV The Difference

AARHUS UNIVERSITET

« Example: A HotStone Card
— Card ¢ = new Card(Findus, “Tres”, 3, 3, 3);
— Now ‘c’is a reference (pointer) to some data in memory

reference to

CS@AU Henrik Baerbak Christensen 39



eV The Difference

AARHUS UNIVERSITET

« Example: A HotStone Card
— Card ¢ = new Card(Findus, “Uno”, 1, 1, 1);

— At machine code level, c is simply
the address of that chunk of memory

CO10
> C013 Findus
C014 Tres

C0lé

. col9
— Here | use hexadecimal CO1lB

numbers for addresses

CS@AU Henrik Baerbak Christensen 40



eV Java References

AARHUS UNIVERSITET

 If you create a class, and do not override ‘toString()’ you
get a glimpse of that memory address

— The JVM does some trickery so it is not a clean/real memory
address, but anyway...

public class PrintAddr {
public static void main(String[] args) {
System.out.println("=== Java References ===");
Point p = new Point();
System.out.println("vValue of p is: " + p );
}
private static @m_ Point { public int x; public int y;

}

csdev@m51:~/tmp$ java PrintAddr
Java References

Value of p 1is:

CS@AU Henrik Baerbak Christensen 41



eV ... The Problem

AARHUS UNIVERSITET

c = getCardInHand(...);

C013 ???

Client program \
C013 contains completely different data
on the client &

CS@AU Henrik Baerbak Christensen

Server program




/v Broker Does Value Passing

AARHUS UNIVERSITET
* The Key point here

Broker only supports pass by value!

(next week we introduce a trick to simulate pass by ref)

 That is, the server will not send the reference, but a
marshalled copy of the data

— |l.e. client receives — {

e owner: Findus,
name: "Tres",

//ﬁ manaCost: 3,
: ca .
t ‘Stup|d" A netWor attack: 3,

isno I .
Qur Broker is N . cupport P ass-by-V“’”e' health: 3

by definition on

CS@AU Henrik Baerbak Christensen 43



/v Consequences

AARHUS UNIVERSITET

* |f the server sends a card Lo indus.
object — pass-by-value > name: TTres”,

attack: 3,
health: 3
¥
" n " { "

* And the client receives this ouner: Findus,
object and then change — nanaCost: 3,
health —~ ’

ealt oo

 Then what happens in the " |
server’s card object ??77? L____J

CS@AU Henrik Baerbak Christensen 44



/v

AARHUS UNIVERSITET

JSON Libraries



/v Libraries

AARHUS UNIVERSITET
« Every distributed system in the world needs to marshall!

* Thus - lots of marshalling libraries around ©
— Do NOT code it yourself!!! You will end reimplementing one!

« JSON | have used many libraries
— Json-simple
— Jackson JSON
— Gson



VeV Gson

AARHUS UNIVERSITET

* Gson is the most compact | have used
— (But have had trouble with ‘date’ objects that marshall incorrectly!)

|t allows easy marshalling of record types

— Also known as
« PODO: Plain Old Data Objects,
« DTO: Data Transfer Object

« Record type (Pascal) / ‘struct’ (C) / record (java 17+)
— No complex methods, only set/get methods with no side effects
— Must have a default constructor

« That is: A pure data object, just storing information
— Akin a ‘resource’ in REST terminology, by the way



/v

AARHUS UNIVERSITET

@Test public void shouldMarshallTeleObservation() {
// This is a learning test, showing Gson marshalling
Gson gson = new Gson();
String json = gson.toJlson(to);

assertThat(json, containsString( substring: "\"patientId\":\"251248-0000\""));

TeleObservation copy son.fromJson(json, TeleObservation.class);
L oy o P ey T e
assertThat( copy.getSystolic().getValue(), is( value: 120.0));
assertThat( copy.getDiastolic().getValue(), is( value: 70.0));

assertThat( copy.getSystolic().getUnit(), is( value: "mm(Hg)") );

« toJdson(obj)
Marshall

« fromdJson(str, type.class)
Demarshall, using given type

CS@AU Henrik Baerbak Christensen

Example:

"patientId™: "251248-0000M™,
"systolic™: {
"value™: 120,
Tunit™: "mthg]-",
"code™: "MSCEB014",
"displayName": "Systolic BE"™
by
"diastolic™: {
"yalue™: 70,
Tunit™e lrm:Hg}lrr
"code™: "MSCEE0Z20",
"displayName™": "Diastolic BE"
Yy
Mdime™s {
"date™: {
Tyear™: 2017,
"month™: &,
"day™: 30
Yy
lrtimElr: {
"hour™: 11,
"minute": 7,
"second": 2&,
"nano™: 0
}
}

48



/v

AARHUS UNIVERSITET

Proxy

You know that one...



/v Example

AARHUS UNIVERSITET
« TeleMedProxy

public String processAndStore(TeleObservation teleObs) |
byte[] requestMessage = marshall(teleObs);
send (server , requestMessage);
byte[] replyMessage = receive ();
String id = demarshall(replyMessage );
return id;

Structure:
«interface»
Client Subject
operation()
realSubject.operation()% e N
~
Proxy RealSubject
& operation() | | operation()

i

CS@AU Henrik Baerbak Christensen

50



VeV Note

AARHUS UNIVERSITET

« The algorithm of all methods in the proxy will be the same
— Marshall parameters, send, await reply, demarshall, return

« Can be auto generated — this is what RMI does

* We will hand-code it, because
— ... it is the learning goal of this course ©

— And it actually makes sense if you want very strict control of
architectural attributes like performance and availability
— Find more info in —

Teaching Distributed Programming — Revisiting the Broker
Pattern

Auth




/v

AARHUS UNIVERSITET

Name Services

Finding the Object to Talk to



/v Coupling Proxy and ‘server-side’
AARHUS UNIVERSITET
« OK, a Proxy “plays the client side role” of the real object

on the server side...

Structure:

«interface»
Subject

Client

operation()

realSu bject.operation()%

Proxy RealSubject

o operation() operation()

« But what if there are many ‘RealSubjects’?
— Like 52 instances of ‘Card’ objects on the server?



/v The pass-by-reference problem!

AARHUS UNIVERSITET

Game.playCard(who, c, 1);

Client program

Server program

Henrik Baerbak Christensen



eV The Solution...

AARHUS UNIVERSITET

 ...Iis Name Services

— Which we will talk about next week
» (Basically just a mapping between a UUID and the objects)

* This week we solve it simply by
— Having only one object!!!
* Known as a ‘singleton’ only one object like it in the world

— There is only one “TeleMed” object

— (And in mandatory, there is only one Game object)



/v Summary

AARHUS UNIVERSITET

« The Broker Pattern combines
— Request/Reply protocol
— Marshalling
— Proxy pattern
— Naming Systems (next week)

... to produce something that (on happy days)

* Allows an Object-Oriented Programming model to apply
to distributed computing



