
Software Engineering

and Architecture

Distributed Systems

An Introduction

Intro…

• Distributed Computing is the last major SWEA topic

– Our perspective: Programming and Pattern Perspective

• Curriculum: My second book ☺

– Confusion: Looks much the the first…

– Get it from https://leanpub.com/frds

• For the price of a box of beer…

– Yes, I like pyramids !

CS@AU Henrik Bærbak Christensen 2

Distributed System

• Why?

– To speed up computation

• Google search, machine learning, and (a few) other cases

– To share information

• Everything else! (Slight exaggeration!)

CS@AU Henrik Bærbak Christensen 3

Limitations

• Distributed systems and distributed computing is a…

• We will limit ourselves to a ”niche”

CS@AU Henrik Bærbak Christensen 4

… vast subject area !!!

Client-server Architectures using Remote Method Invocation

… this niche covers a lot of systems in practice☺

And Limiting ourselves

• Even that is

• … because it must be

– Highly available, performant, and secure

• And that is topics in advanced software architecture

CS@AU Henrik Bærbak Christensen 5

… difficult to make!!!

We will only consider happy path:
All computers and networks are working;

Few users and none that are malicious

Client-Server

• You all know ‘client-server’ architectures, but…

CS@AU Henrik Bærbak Christensen 6

Server

Client
Client

Client
Client

Client

Reactive

Active

Ala: web browsing, facebook, …

Client-Server

• One big difference from all you have been doing up until

now…

– You have been building “programs” = all behavior in one ‘unit’

• A client-server system consists of two programs

• The client program: The one the user runs

– Communicating with…

• The server program: Well hidden in some server room

– The one storing the ‘shared information’

CS@AU Henrik Bærbak Christensen 7

Or Visually

CS@AU Henrik Bærbak Christensen 8

game.playCard(Findus, ff);

game.playCard(Findus, ff);

Client program

Server program

Or Visually

CS@AU Henrik Bærbak Christensen 9

game.playCard(Findus, c) {
 result =
 sendToServer(“Findus tries to play ff”);
 return result;
}

Await incoming command, c {
 if (c == “Findus tries to play ff”) {
 r = game.playCard(Findus,ff);
 send ‘r’ back to client;
 } else …

Client program

Server program

Or Visually

CS@AU Henrik Bærbak Christensen 10

game.playCard(Findus, c) {
 result =
 sendToServer(“Findus tries to play ff”);
 return result;
}

Await incoming command, c {
 if (c == “Findus tries to play ff”) {
 r = game.playCard(Findus,ff);
 send ‘r’ back to client;
 } else …

Client program

Server program

One Word of Caution

• We will happily disregard security !!!

• Security is so important that we ignore it!

– Because the real security techniques is one big set of hard

bindings and strong coupling

• You need certificates that tie you to a specific DNS name

– Certificate stores, key pair generation, trust chains, yaga yaga

• Quite a lot of extra coding and makes experiments difficult

• Morale: Add that stuff for real production usage !

CS@AU Henrik Bærbak Christensen 11

The History

• Birrell and Nelson, 1984:

– “allow calling procedure on remote machines”

– A calls procedure f on B means

• A suspends, information on f is transmitted to B

• B executes the f procedure

• B sends the result back to A

• A resumes

CS@AU Henrik Bærbak Christensen 12

Grounding Example

TeleMed
Inspired by Net4Care:

https://baerbak.cs.au.dk/net4care/

Vision

• Vision

– Replace out-patient visits by

measurements made by

patients in their home

– Move data from home to

regional/national storage so all

health care personal can view them...

• Motivation

– Reduce out-patient visits

• Better quality of life

• Cost savings

• Better traceability and visibility

CS@AU Henrik Bærbak Christensen 14

Story 1

1) Inger measures her BP
using her TeleMed terminal

2) BP measurement stored
as HL7 document

CS@AU Henrik Bærbak Christensen 15

Story 2

1) GP queries last month’s BP
measurements for Inger using
web browser

2) Query for all BP documents
associated with Inger

CS@AU Henrik Bærbak Christensen 16

(What is XDS)

• Cross-Enterprise Document Sharing

– One Registry + Multiple Repositories

– Repository: Stores clinical documents

• (id,document) pairs

– Registry: Stores metadata with document id

• Metadata (cpr, timeinterval, physician, measurement type,...)

• Id of associate document and its repository

• Think

– Registry = Google (index but no data)

– Repository = Webserver (data but no index)

H B Christensen 17

(What is HL7)

• HL7 is a standard (complex!) for clinical

information storage and exchange.

– Version 3 loves XML!

• Our version:

H B Christensen 18

Real version:

TeleMed Design

• Roles involved

• TeleObservation: Represents a measurement

• HomeClient: Responsible for measuring + uploading

• TeleMed: Responsible for storage and queries

CS@AU Henrik Bærbak Christensen 19

• Start a server

– gradle serverHttp

• Send an obs.

– gradle homeHttp

– … -Psys=126 -Pdia=70

-Pid=pid17

• GP review in browser

– http://localhost:4567/bp/pid17

Demo

20

Story 1

Story 2

Source Code

• The source code is open

source at

– https://bitbucket.org/henrikbaerb

ak/broker/

– Download or Fork

• You will want its code to

learn the Broker pattern…

– But your HotStone mandatory

only needs to fetch the Broker

library using gradle…

• As with the MiniDraw library

CS@AU Henrik Bærbak Christensen 21

https://bitbucket.org/henrikbaerbak/broker/
https://bitbucket.org/henrikbaerbak/broker/
https://bitbucket.org/henrikbaerbak/broker/

Source Code

• Subprojects

– Broker: Core roles + default

implementation of some

– TeleMed: The TeleMed code

including tests of broker code

– Others: We will return to these

next…

CS@AU Henrik Bærbak Christensen 22

Issues in Distribution

Why is it hard?

Challenge

• How guys like me like to code:

• Which is then something like this on the client:

CS@AU Henrik Bærbak Christensen 24

Challenge

• However - networks only support two asynch functions!

• Which is not exactly the same as

CS@AU Henrik Bærbak Christensen 25

Issues (at least!)

• Send/receive is a too low level

programming model

• Send() does not wait for a reply from server (Asynch)

• Reference to object on my machine does not make

sense on remote computer (memory address)

• Networks does not transfer objects, just bits

• Networks are slow

• Networks and remote computers may fail

• Networks are insecure, others may pick up our data

CS@AU Henrik Bærbak Christensen 26

Architectural Issues: Not SWEA stuff. (Follow my EVU course once you are in a job ☺)

Performance QA

Availability QA

Security QA

Performance

• Just how much slower is a network call compared to a

local in-JVM memory call?

• Imagine that your next trip to the supermarket for a soda

was 275 times slower???

– 10 minutes walk versus 46,8 hours walking ☺

CS@AU Henrik Bærbak Christensen 27

Elements of a Solution

• On the ‘happy path’, we need to

– Make the HomeClient invoke a synchronous method call on a

remote TeleMed object using only network send/receive

– Keep our OO programming model: telemed.processAndStore(to);

• That is invoke specific method on remote object

– Convert TeleObservation object into bits to send it, and convert it

back again

– Locate the remote TeleMed object

CS@AU Henrik Bærbak Christensen 28

Elements Overview

• Solutions are

– Request/Reply Protocol

• Simulate synchronous call (solves (partly) concurrency issue)

– Marshalling

• Packing objects into bits and back (solves data issue)

– Proxy Pattern

• Simulate method call on client (solves programming model issue)

– Naming Systems

• Use a registry/name service (solves remote location issue)

• Bundled together these constitute

– The Broker pattern

CS@AU Henrik Bærbak Christensen 29

Request/Reply

The Protocol

• Known from every WWW access you have ever made…

– Firefox will block until a web page has been received

CS@AU Henrik Bærbak Christensen 31

Pairing Send/Receives

• Client does

– Send() and

receive

• Server does

– Receive() and

send()

• Roles

– Client is active – initiate action

– Server is reactive – awaits actions and then reacts

CS@AU Henrik Bærbak Christensen 32

Marshalling

Or Serialization

CS@AU Henrik Bærbak Christensen 33

Definitions

CS@AU Henrik Bærbak Christensen 34

Two Basic Approaches

• There are two approaches

– Binary formats

• Google ProtoBuf, proprietary

– Textual formats

• XML, JSON, proprietary

• Exercise: Costs? Benefits?

CS@AU Henrik Bærbak Christensen 35

JSON blood pressure

And we need more

• As we can send only bits, we also need to marshal

information about the method and object id!

CS@AU Henrik Bærbak Christensen 36

Note

• Marshalling is fine for primitive datatypes (int, double,

char, array, …) but…

• What about object references?

– inventory.addCustomer(c) where c is Customer object?

– Issue: the ‘c’ is an object reference but how to a use ‘c’ on the

client if the object is located on the server?

• Actually, it sort of depends on parameter passing…

CS@AU Henrik Bærbak Christensen 37

Parameter Passing

• Pass by reference

– The Java style for all object types

– You do not get the Customer value, you get a reference to it!

– public void addCustomer(Customer c);

• (‘c’ is a reference to data, not the data themselves)

• Pass by value

– Java does this for primitive types, like int and double

– You do get the value itself

– public void deposit(double amount);

• (‘amount’ is the data (a copy of the value passed))

CS@AU Henrik Bærbak Christensen 38

The Difference

• Example: A HotStone Card

– Card c = new Card(Findus, “Tres”, 3, 3, 3);

– Now ‘c’ is a reference (pointer) to some data in memory

CS@AU Henrik Bærbak Christensen 39

Findus

Tres

3

3

3

reference to c:

The Difference

• Example: A HotStone Card

– Card c = new Card(Findus, “Uno”, 1, 1, 1);

– At machine code level, c is simply

the address of that chunk of memory

– Here I use hexadecimal

numbers for addresses

CS@AU Henrik Bærbak Christensen 40

C013c:

Findus

Tres

3

3

3

Java References

• If you create a class, and do not override ‘toString()’ you

get a glimpse of that memory address

– The JVM does some trickery so it is not a clean/real memory

address, but anyway…

CS@AU Henrik Bærbak Christensen 41

… The Problem

CS@AU Henrik Bærbak Christensen 42

Client program

Server program

C013 ???c: Findus

Tres

3

3

3

C013c:c = getCardInHand(…);

C013 contains completely different data
on the client 

Broker Does Value Passing

• The Key point here

• That is, the server will not send the reference, but a

marshalled copy of the data

– I.e. client receives

CS@AU Henrik Bærbak Christensen 43

Broker only supports pass by value!
(next week we introduce a trick to simulate pass by ref)

Consequences

• If the server sends a card

object – pass-by-value

• And the client receives this

object and then change

health

• Then what happens in the

server’s card object ???

CS@AU Henrik Bærbak Christensen 44

health: 1

Quite problematic, right?
We solve it next week…

JSON Libraries

Libraries

• Every distributed system in the world needs to marshall!

• Thus – lots of marshalling libraries around ☺

– Do NOT code it yourself!!! You will end reimplementing one!

• String json = ”{ name: ”+ object.name+ ”}…

• JSON I have used many libraries

– Json-simple

– Jackson JSON

– Gson

CS@AU Henrik Bærbak Christensen 46

Gson

• Gson is the most compact I have used

– (But have had trouble with ‘date’ objects that marshall incorrectly!)

• It allows easy marshalling of record types

– Also known as

• PODO: Plain Old Data Objects,

• DTO: Data Transfer Object

• Record type (Pascal) / ‘struct’ (C) / record (java 17+)

– No complex methods, only set/get methods with no side effects

– Must have a default constructor

• That is: A pure data object, just storing information

– Akin a ‘resource’ in REST terminology, by the way

CS@AU Henrik Bærbak Christensen 47

Example:

• toJson(obj)

– Marshall

• fromJson(str, type.class)

– Demarshall, using given type

CS@AU Henrik Bærbak Christensen 48

Proxy

You know that one…

Example

• TeleMedProxy

CS@AU Henrik Bærbak Christensen 50

Client Server

Network
call

Note

• The algorithm of all methods in the proxy will be the same

– Marshall parameters, send, await reply, demarshall, return

• Can be auto generated – this is what RMI does

• We will hand-code it, because

– … it is the learning goal of this course ☺

– And it actually makes sense if you want very strict control of

architectural attributes like performance and availability

– Find more info in

CS@AU Henrik Bærbak Christensen 51

Name Services

Finding the Object to Talk to

Coupling Proxy and ‘server-side’

• OK, a Proxy “plays the client side role” of the real object

on the server side…

• But what if there are many ‘RealSubjects’?

– Like 52 instances of ‘Card’ objects on the server?

CS@AU Henrik Bærbak Christensen 53

Client Server

Network
call

The pass-by-reference problem!

CS@AU Henrik Bærbak Christensen 54CS@AU Henrik Bærbak Christensen 54

Client program

Server program

???c:

C013c1:
Game.playCard(who, c, 1);

C017c2:

C226c52:

The Solution…

• … is Name Services

– Which we will talk about next week

• (Basically just a mapping between a UUID and the objects)

• This week we solve it simply by

– Having only one object!!!

• Known as a ‘singleton’ only one object like it in the world

– There is only one “TeleMed” object

– (And in mandatory, there is only one Game object)

CS@AU Henrik Bærbak Christensen 55

Summary

• The Broker Pattern combines

– Request/Reply protocol

– Marshalling

– Proxy pattern

– Naming Systems (next week)

• … to produce something that (on happy days)

• Allows an Object-Oriented Programming model to apply

to distributed computing

CS@AU Henrik Bærbak Christensen 56

